下列运动中:①某人乘电梯从一楼上升到九楼,人的移动;②拉开推拉式铝合金窗子时,窗子的移动;③沿某个方向移动电脑的鼠标时,显示屏上鼠标指针的移动;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有( )
A. 1种 B.2种 C.3种 D.4种
如图,将三角板的直角顶点放在两条平行线a、b中的直线b上,如果∠1=40°,则∠2的度数是( )
A、30° B、45° C、40° D、50°
如图,直线AB、CD相交于点E,DF∥AB. 若∠D=70°,则∠CEB等于( )
A.70° B.80° C.90° D.110°
已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
1.填空:菱形ABCD的边长是 ▲ 、面积是 ▲ 、 高BE的长是 ▲ ;
2.探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t = 4 秒时的情形,并求出k的值.
已知:如图,⊙与轴交于C、D两点,圆心的坐标为(1,0),⊙的半径为,过点C作⊙的切线交轴于点B(-4,0)
1.求切线BC的解析式;
2.若点P是第一象限内⊙上一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点的坐标;
3.向左移动⊙(圆心始终保持在轴上),与直线BC交于E、F,在移动过程中是否存在点,使得△AEF是直角三角形?若存在,求出点 的坐标,若不存在,请说明理由.
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
1.如图①,当r<a时,根据d与a、r之间关系,请你将⊙O与正方形的公共点个数
填入下表:
2.如图②,当r=a时,根据d与a、r之间关系,请你写出⊙O与正方形的公共点个数。
当r=a时,⊙O与正方形的公共点个数可能有 个;
3.如图③,当⊙O与正方形有5个公共点时,r= (请用a的代数式表示r,不必说理)