已知:正方形ABCD的边长为4,⊙O交正方形ABCD的对角线AC所在直线于点T,连接TO交⊙O于点S。
1.如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连结DT、DS。
①试判断线段DT、DS的数量关系和位置关系; ②求AS+AT的值;
2.如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连结DT、DS。
求AS—AT的值。
3.如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连结ET、ES。根据⑴、⑵计算,通过观察、分析,对线段AS、AT的数量关系提出问题并解答。
某学校计划利用一片空地建一个学生自行车车棚,自行车车棚为矩形,其中一面靠墙,这堵墙的长度为12米,另二面墙用现有的木板材料围成,总长为26米,且计划建造车棚的面积为80平方米。
1.如图1,为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?
2.如图2,为了方便学生取车,施工单位又决定在车棚内修建三条等宽的小路(小路垂直或平行于墙),使得停放自行车的面积为54平方米,那么小路的宽度是多少米?
我市一家电子计算器专卖店每只进价13元,售价20元,为了扩大销售,该店现规定,凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元。问一次卖多少只获得的利润为120元?
如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G。
1.直线FC与⊙O有何位置关系?并说明理由;
2.若OB=BG=2,求CD的长。
关于x的一元二次方程。
1.若方程有两个不相等的实数根,求k的取值范围;
2.当k是怎样的正整数方程没有实数根?
某工厂甲、乙两名工人参加操作技能培训。现分别从他们在培训期间参加的若干次测试成绩中随机抽取6次,记录如下:
甲 |
79 |
82 |
78 |
81 |
80 |
80 |
乙 |
83 |
80 |
76 |
81 |
79 |
81 |
1.请你计算这两组数据的平均数;
2.现要从中选派一人参加操作技能比赛,从成绩的稳定性考虑,你认为选派哪名工人参加合适?请说明理由。