(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图1),
①∠EBF=_______°;
②探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图2),求的值(用含k的式子表示).
(10分)为了预防流感,某校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比,药物释放完毕后,y与t的函数关系式为y=(a为常数),如图所示,根据图中提供的信息,解答下面的问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量的取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
(8分)“五一”期间,为了满足广大人民的消费需求,某商店计划用160 000元购进一批家电,这批家电的进价和售价如下表:
(1)若全部资金用来购买彩电和洗衣机共100台,则商家可以购买彩电和洗衣机各多少台?
(2)若在现有资金160 000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算,共有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润.(利润=售价-进价)
(8分)如图①,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况,实验数据记录如下表:
(1)把上表中(x,y)的各组对应值作为点的坐标,在图②中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
(3)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?
(4)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
(8分)如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
(1)求该反比例函数的关系式;
(2)求直线BC的函数关系式.
(8分)某工厂承担了加工2 100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前了12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,则甲、乙两车间每天加工零件各多少个?