用配方法解方程:
(本题满分6分)(1)计算:.
如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.
(1)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,点N所经过路径长为 ;
(2)线段OA的长为 .
(结果保留π)
取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,把剪下的①这部分展开,平铺在桌面上.若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为 .
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,
BC=2AD=,点E是BC边的中点,△DEF是等边三角形,
DF交AB于点G,则△BFG的周长为 .
已知实数x,y满足,则x+y的最大值为 。