(本题满分10分)如图,一次函数y=k1x+b的图象经过
A(0,-2),B(1,0)两点,与反比例函数的
图象在第一象限内的交点为M,若△OBM的面积为2.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥MP?若存在,
求出点P的坐标;若不存在,说明理由.
(本题满分8分)丁丁想在一个矩形材料中剪出
如图阴影所示的梯形,作为要制作的风筝的一个翅膀.
请你根据图中的数据帮丁丁计算出BE、CD的长度
(结果精确到个位,).
(本题满分8分)如图,甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上时,重转一次,直到指针都指向一个区域为止).
(1)请你用画树状图或列表格的方法求出|m+n|>1的概率;
(2)直接写出点(m,n)落在函数图象上的概率.
用配方法解方程:
(本题满分6分)(1)计算:.
如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.
(1)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,点N所经过路径长为 ;
(2)线段OA的长为 .
(结果保留π)