已知一个几何体的三视图和有关的尺寸如图所示,请描述该几何体的形状,并根据图中数据计算它的表面积.
解不等式组并把解在数轴上表示出来.
如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B (8,0),D (0,4),若将△ABC沿AC所在直线翻折,点B落在点E处.则E点的坐标是 ▲ .
勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么△PQR的周长等于 ▲ .
若一组数据的平均数是,方差是,则的平均数是 ▲ ,方差是 ▲ .
若关于x的不等式组的整数解仅为1,2,3,则适合这个不等式组的整数a,b的有序数对(a,b)的个数是 ▲个.