把“等角的补角相等”写成“如果…,那么…”的形式_________________________________.
如图,直线a、b被直线c所截,a∥b,∠1=70°,则∠2= .
(14分)已知抛物线与轴的一个交点为A(-1,0),
与y轴的正半轴交于点C.
⑴直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;
⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式.
(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式(不要求写自变量的取值范围);
(2)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
(本题10分)如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
试判断直线BD与⊙O的位置关系,并证明你的结论.
(10分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
若⊙O的半径为1,求图中阴影部分的面积(结果保留π).