绝对值最小的有理数是__________
—(—3)= (—2)3 =
在,0,-1.5,-│-8│,,-22中,负数有 个
填空
1.方程的解是 .
2.如图,在平行四边形ABCD中,已知
∠A=45°,则∠C的度数为 .
如图,在直角坐标系中,抛物线与轴交于点D(0,3).
1.直接写出的值;
2.若抛物线与轴交于A、B两点(点B在点A的右边),顶点为C点,求直线BC的解析式;
3.已知点P是直线BC上一个动点,
①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥轴,垂足为E,连结BE.设点P的坐标为(),△PBE的面积为,求与的函数关系式,写出自变量的取值范围,并求出的最大值;
②试探索:在直线BC上是否存在着点P,使得以点P为圆心,半径为的⊙P,既与抛物线的对称轴相切,又与以点C为圆心,半径为1的⊙C相切?如果存在,试求的值,并直接写出点P的坐标;如果不存在,请说明理由.
在平面直角坐标系中,把矩形OABC的边OA、OC
分别放在轴和轴的正半轴上,已知OA,OC
1.直接写出A、B、C三点的坐标
2.将矩形OABC绕点O逆时针旋转°,得到矩形OA1B1C1,
其中点A的对应点为点A1.
①当时,设AC交OA1于点K(如图1),
若△OAK为等腰三角形,请直接写出的值;
②当90时(如图2),延长AC交A1C1于点D,
求证:AD⊥A1C1;
③当点B1落在轴正半轴上时(如图3),设BC
与OA1交于点P,求过点P的反比例函数的解析式;
并探索:该反比例函数的图象是否经过矩形OABC
的对称中心?请说明理由.