下列各数中,无理数是( )
A. B. C.3.1415926 D.
如图11所示,已知抛物线与轴交于A、B两点,与轴交于点C.
1.求A、B、C三点的坐标
2.过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.
3.在轴上方的抛物线上是否存在一点M,过M作MG轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.
如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..
1.求证:ΔBEF ∽ΔCEG.
2.当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.
3.设BE=x,△DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?
如图,某小区有一长为30m,宽为20m的广场,图案如下,其中白色区域四周出口的宽度一样.小明在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在黑色区域的概率是,那么白色区域四周出口的宽度应是多少?
如图,AB是半圆O的直径,AD为弦,BC是半圆O的切线,OC∥AD,
1.求证:CD是半圆O的切线
2.若BD=BC=6,求AD的长.
1.如图,在平面直角坐标系中,△ABC的三个顶点
坐标分别是A(2,3)、B(2,1)、C(3,2).
① 判断△ABC的形状;②如果将△ABC沿着边AC旋转,求所得旋转体的全面积
2.如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的格点上.
①在图甲中作出的四边形是中心对称图形但不是轴对称图形;
②在图乙中作出的四边形是轴对称图形但不是中心对称图形;
③在图丙中作出的四边形既是轴对称图形又是中心对称图形.