在平面直角坐标系xOy中,抛物线与x轴交于A、B两点(点A
在点B的左侧),与y轴交于点C(0 , 4),D为OC的中点.
1.(1)求m的值;
2.(2)抛物线的对称轴与 x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与 相似?若存在,请求出点F的坐标,若不存在,请说明理由;
3.(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为?若存在,求出点G的坐标;若不存在,请说明理由.
已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.
1.(1)如图1, 当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);
2.(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
3.(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).
已知:关于的方程.
1.当a取何值时,方程有两个不相等的实数根;
2.(2) 当整数a取何值时,方程的根都是正整数.
李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
1.(1)存放x天后,将这批核桃一次性出售,如果这批核桃的销售总金额为y元,试求出y与x之间的函数关系式;
2.(2)如果仓库存放这批核桃每天需要支出各种费用合计340元,李经理要想获得利润22 500元,需将这批核桃存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
在一个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.若从中任意摸出一个球,这个球是白球的概率为0.5 .
1.(1)求口袋中红球的个数;
2.(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球不放回,再摸出一个.请用画树状图的方法求甲摸到两个球且得2分的概率.
如图,已知直线交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作,垂足为D.
1.(1) 求证:CD为⊙O的切线;
2.(2) 若CD=2AD,⊙O的直径为10,求线段AC的长.