已知二次函数y = x2 +4x +3.
1.(1)用配方法将y = x2 +4x +3化成y = a (x - h) 2 + k的形式;
2.(2)在平面直角坐标系中,画出这个二次函数的图象;
3.(3)写出当x为何值时,y>0.
如图,,,,.
1.(1)求的长;
2.(2)求的值.
如图,是⊙O的直径,弦BC=5,∠BOC=60°,OE⊥AC,垂足为E.
1.(1)求OE的长;
2.(2)求劣弧AC的长.
已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
以直线为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式.
计算: