.如图,一架飞机在空中P处探测到某高山山顶D处的俯角为60°,
此后飞机以300米/秒的速度沿平行于地面AB的方向匀速飞行,飞行10秒到山顶D的正上方C处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(结果可以含有根号)。
已知:抛物线的图象经过原点,且开口向上.
1.确定m的值;
2.求此抛物线的顶点坐标;
3.当x取什么值时,y随x的增大而增大?
4.当x取什么值时,y<0?
已知二次函数y = x2 +4x +3.
1.(1)用配方法将y = x2 +4x +3化成y = a (x - h) 2 + k的形式;
2.(2)在平面直角坐标系中,画出这个二次函数的图象;
3.(3)写出当x为何值时,y>0.
如图,,,,.
1.(1)求的长;
2.(2)求的值.
如图,是⊙O的直径,弦BC=5,∠BOC=60°,OE⊥AC,垂足为E.
1.(1)求OE的长;
2.(2)求劣弧AC的长.
已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。