如图:四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c的图象恰好经过x轴上的点A、B。
1.(1)求:点C的坐标;
2.(2)若抛物线向上平移后恰好经过点D,求:平移后抛物线的解析式。
已知:矩形ABCD中,AB=6,∠BAC=30o,点E在CD上,
1.若AE=4,求:梯形AECB的面积;
2.若点F在AC上,且∠AFB=∠CEA,求:的值。
新定义:抛物线在直线的一侧,直线与抛物线有且只有一个公共点时,称直线与抛物线相切;公共点叫做切点。
那么当二次函数y=x2+mx与y=3x+m-2的图象相切时,求:m 的值以及切点的坐标。
某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场
调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.
1.(1)如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克
这种水果涨了多少元?
2.(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.
若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天
销售这种水果盈利最多?最多盈利多少元?
已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF=,
求EF的长.
已知如图:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,若AC=20,BC=15,∠ACB=90O,求:二次函数解析式。