如图,抛物线,与轴交于点,且.
1.(1)求抛物线的解析式;
2.(2)探究坐标轴上是否存在点,使得以点为顶点的三角形为直角三角形?
若存在,求出点坐标,若不存在,请说明理由;
3.(3)直线交轴于点,为抛物线顶点.若,
的值.
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上.
1.(1)求抛物线对应的函数关系式;
2.(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
3.(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
如图,直角中,,,,点为边上一动点,∥,交于点,连结.
1.(1)求、的长;
2.(2)设的长为,的面积为.当为何值时,最大,并求出最大值.
. 如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05m.
1.1)建立如图所示的直角坐标系,求抛物线的函数关系式;
2.(2)该运动员身高1.8m,在这次跳投中,球在头顶上方
0.25m处出手,问:球出手时,他跳离地面的高度是多少?
如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.
. 汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为,B村的俯角为.(如图).求A、B两个村庄间的距离.(结果精确到米,参考数据)