(本题10分)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.
1.观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为 ;
(2)如图2,当a=4,b=2时,四边形ABFD的面积为 ;
(3)如图3,当a=4,b=3时,四边形ABFD的面积为 ;
2.探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;
3.综合应用:(5)农民赵大伯有一块正方形的土地(如图),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.(要求尺规作图,保留作图痕迹)
(本题8分)如图,在平行四边形ABCD中,∠D=60°,以AB为直径作⊙O,已知AB=10,AD=m.
1.(1)求O到CD的距离(用含m的代数式表示);
2.(2)若m=6,通过计算判断⊙O与CD的位置关系;
3.(3)若⊙O与线段CD有两个公共点,求m的取值范围.
(本题8分)如图,△ABC内接于⊙O,BC是⊙O的直径,OE⊥AC,垂足为E,过点A作⊙O的切线与BC的延长线交于点D,sinD= ,OD=20.(1)求∠ABC的度数;(2)连接BE,求线段BE的长
(本题8分)如图,在一块三角形区域ABC中,∠C=90°,边AC=8m,BC=6m,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.
1.(1)求△ABC中AB边上的高h;
2.(2)设DG=x,水池DEFG的面积为S,求S关于x的函数关系式,当x取何值时,水池DEFG的面积S最大?
(本题8分)水坝的横断面为梯形ABCD,迎水坡BC的坡角B为30°,背水坡AD坡比为1:1.5,坝顶宽DC=2米,坝高4米,求:
1.(1)坝底AB的长; 2.(2)迎水坡BC的坡比.
(本题6分)小英过生日,同学们为她设置了一个游戏:把三个相同的乒乓球分别标上了1、2、3,放进一个盒子摇匀,另外拿两个相同的乒乓球也分别标上1、2,放进另外一个盒子里,现从两个盒子分别抽出1个球.
(1) 用画树状图或列表的方法列出所有可能的结果;
(2)若两个球的数字之积为奇数,则小英唱歌,若两个球的数字之积为偶数,则小英跳舞.问:小英唱歌的概率大还是跳舞的概率大?