如图,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0)。
1.(1)(2分) 当t = 2时,AP = ,点Q到AC的距离是 ;
2.(2)(2+2分)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;并求出S的最大值。
3.(3)(4分)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;
4.(4)(2分)当DE经过点C 时,请求出t的值.
工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
1.(1)(4分)该工艺品每件的进价、标价分别是多少元?
2.(2)(6分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?
(本小题满分8分)要在宽为28m的南滨路的路边安装路灯。路灯的灯臂长AC为3m,且与灯柱AB成120°的夹角(如图所示),路灯采用圆锥形灯罩,灯罩的轴线CD与灯臂AC垂直。当灯罩的轴线通过公路路面的中线时,照明效果最理想。问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,)
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,
连接DE,F为线段DE上一点,且∠AFE=∠B.
1.(1)求证:△ADF∽△DEC
2.(2)若AB=4,AD=3,AE=3,求AF的长.
先化简,再求值 ,其中x满足x2-x-1=0.
某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40°减至35°.已知原楼梯AB长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,sin35°≈0.57,tan35°≈0.70,cot35°≈1.428)