(本小题满分10分)
已知直线y= x+4 与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
1.(1)试确定直线BC的解析式.
2.(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与 t 的函数关系式,并写出自变量的取值范围.
3.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.
(本小题满分10分)
某工厂计划为震区生产两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套型桌椅(一桌两椅)需木料,一套型桌椅(一桌三椅)需木料,工厂现有库存木料.
1.(1)有多少种生产方案?
2.(2)现要把生产的全部桌椅运往震区,已知每套型桌椅的生产成本为100元,运费2元;每套型桌椅的生产成本为120元,运费4元,求总费用(元)与生产型桌椅(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)
3.(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.
.(本小题满分7分)已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.当绕点旋转到时(如图1),易证.
1.(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.
2.(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
(本小题满分8分)
某单位准备印制一批证书.现有两个印刷厂可供选择.甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷教量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
1.(1)请你直接写出甲厂的制版费及与x的函数解析式.并求出其证书印刷单价.
2.(2)当印制证书8千个时.应选择哪个印刷厂节省费用.节省费用多少元?
3.(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?
(本小题满分8分)
三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:
1.(1)请将表一和图一中的空缺部分补充完整.
2.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.
3.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
(6分)如图,二次函数的图象与轴交于、两点,其中点
坐标为(-1,0).点(0,5),(1,8)在抛物线上,为抛物线的顶点.
1.(1)求抛物线的函数表达式;
2.(2)求的面积.