已知关于x的一元二次方程有两个不等的实根,
1.(1)求k的取值范围;
2.(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;
3.(3)在(2)的条件下,二次函数与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若 ,求D点的坐标。
如图1,若将△AOB绕点O逆时针旋转180°得到△COD,则△AOB≌△COD.此时,我们称△AOB与△COD为“8字全等型”.借助“8字全等型”我们可以解决一些图形的分割与拼接问题.例如:图2中,△ABC是锐角三角形且AC>AB,点E为AC中点,F为BC上一点且BF≠FC(F不与B、C重合),沿EF将其剪开,得到的两块图形恰能拼成一个梯形.
请分别按下列要求用直线将图2中的△ABC重新进行分割,画出分割线及拼接后的图形.
1.(1)在图3中将△ABC沿分割线剪开,使得到的两块图形恰能拼成一个平行四边形;
2.(2在图4中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的两块为直角三角形;
3.(3在图5中将△ABC沿分割线剪开,使得到的三块图形恰能拼成一个矩形,且其中的一块为锐角三角形.
已知:如图,AB是⊙O的直径,BC是弦,OD⊥BC于点F,交⊙O于点D,连接AD、CD,∠E=∠ADC.
1.(1)求证:BE是⊙O的切线;
2.(2)若BC=6,tanA = ,求⊙O的半径.
一个袋中有3张形状大小完全相同的卡片,编号为1、2、3,先任取一张,再从剩下的两张中任取一张 .请你用列举法(画树状图或列表的方法)求取出的两张卡片上的数字之和为5的概率.
如图, 小明想测量某建筑物的高,站在点处,看建筑物的顶端,测得仰角为,再往建筑物方向前行米到达点处,看到其顶端,测得仰角为,求建筑物的长( 结果精确到,).
已知二次函数y = x2 +4x +3.
1.(1)用配方法将y = x2 +4x +3化成y = a (x - h) 2 + k的形式;
2.(2)在平面直角坐标系中,画出这个二次函数的图象;
3.(3)写出当x为何值时,y>0.