如图,四边形是平行四边形,抛物线过三点,与轴交于另一点.一动点以每秒1个单位长度的速度从点出发沿向点运动,运动到点停止,同时一动点从点出发,以每秒3个单位长度的速度沿向点运动,与点同时停止.
1.(1)求抛物线的解析式;
2.(2)若抛物线的对称轴与交于点,与轴交于点,当点运动时间为何值时,四边形是等腰梯形?
3.(3)当为何值时,以为顶点的三角形与以点为顶点的三角形相似?
如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
1.(1)求证:△ACD∽△BAC;
2.(2)求DC的长;
3.(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.
如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交轴于两点,开口向下的抛物线经过点,且其顶点在⊙上.
1.(1)求的大小;
2.(2)写出两点的坐标;
3.(3)试确定此抛物线的解析式;
4.(4)在该抛物线上是否存在一点,使线段与互相平分?若存在,求出点的坐标;若不存在,请说明理由.
某服装厂批发应季T恤衫,其单价y(元)与批发数量x(件)(x为正整数)之间的函数关系如图所示.
1.(1)请你直接写出当100<x≤500且x为整数时,y与x的函数关系式;
2.(2)一个批发商一次购进200件T恤衫,所花的钱数是多少元?
(其他费用不计);
3.(3)若每件T恤衫的成本价是45元,当100<x≤500件( x为正整数)时,求服装厂所获利润w(元)与x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?
把两个含有30°角的直角三角板如图放置,点D在BC上,连结BE、AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.
已知:如图,AB为半圆O的直径,C、D是半圆上的两点,E是AB上除O外的一点,AC与DE交于点F.①;②DE⊥AB;③AF=DF.请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.