(本题满分12分)
1.(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,
AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB
=∠MAE.
(下面请你完成余下的证明过程)
2.(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
3.(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
.(本小题10分)
随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求:
1.(1)该小区家庭轿车拥有量的年平均增长率是多少?
2.(2)该小区到2009年底家庭轿车将达到多少辆?
为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
(本小题8分)
在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
.(本题8分)
如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.
1.(1)求证:CF﹦BF;
2.(2)若CD ﹦6, AC ﹦8,则⊙O的半径为 ,CE的长是 .
(本小题10分)
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
请根据以上图表提供的信息,解答下列问题:
1.(1)表中所表示的数分别为:;
2.(2)请在右图中,补全频数分布直方图;
3.(3)比赛成绩的中位数落在哪个分数段?
4.(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
(本小题10分)
如图,在平面直角坐标系中,的三个顶点的坐标分别为.
1.(1)画出关于x轴对称的,并写出点的坐标.
2.(2)画出绕原点顺时针方向旋转90°后得到的,并写出点的坐标.
3.(3)将平移得到,使点的对应点是,点的对应点是,点的对应点是,在坐标系中画出,并写出点,的坐标.