如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点.
1.填空:GF的长度为________,等腰梯形DEFG的面积为________.
2.操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF’G’(如图2)探究:在运动过程中,四边形BDG’G能否为菱形?若能,请求出此时x的值;若不能,请说明理由.
如图1,正方形ABCD中,E、F分别是CD、AD上的点,且满足
AF=DE,连接BF、AE,交点为O,
1.请判断AE与BF的关系,并证明你的结论.
2.如图2,连接BE、EF,若G、H、P、Q分别是AB、BE、EF、FA的中点,试说明四边形GHPQ是正方形.
某风景区的湖心岛靠水边有一凉亭A,其正东方向的湖边B处有一棵大树,游客李先生必须在10分钟之内从湖心岛凉亭A处划船赶回湖边B,否则
他将赶不上旅游车约定的发车时间.已知湖边建筑物C在凉亭A的南偏东45°方向上,也在大树B的南偏西32°的方向上,且量得B、C间的距离为100m.若
李先生立即登船以15m/s的速度划行,问他能否在规定时间内赶到B处?
(参考数据:sin32°=0.5299 cos32°=0.8480)
一张长方形桌子的桌面长为3m,宽为2m,现将台布铺在桌子上,各边垂下的长度相同,且台布面积是桌面面积的2倍,求这块台布的长和宽.
计算:2-++(sin45°)0
定义:一个定点与圆上各点之间距离的最小值称为这个点与这个圆之间的距离.现有一矩形ABCD如图所示,AB=14cm,BC=12cm,⊙K与矩形的
边AB、BC、CD分别相切于点E、F、G,则点A与⊙K的距离为_______cm.