(6分):某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从以下4个方案中选择合理的方案来确定每个演讲者的最后得分。
方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.
方案3:所有评委所给分的中位数.
方案4:所有评委所给分的众数.
|
1.(1)分别按上述4个方案计算这个同学演讲的最后得分;
2.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.
(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:
1.(1)根据上面多面体模型,完成表格中的空格:
多面体 |
顶点数(V) |
面数(F) |
棱数(E) |
四面体 |
4 |
4 |
6 |
长方体 |
8 |
6 |
12 |
正八面体 |
6 |
8 |
12 |
正十二面体 |
|
|
|
2.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
3.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
4.(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y=
(本题6分)点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.
1.(1)如图1,若点O在边BC上,求证:AB=AC;
2.(2)如图2,若点O在△ABC的内部,求证:AB=AC;
3.(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.
勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了一枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中, 已知∠ACB=90°,∠BAC=30°,AB=4,作△PQR使得∠R=90°,点H在边QR上,点D、E在边PR上,点G、F在边PQ上,那么△PQR的周长等于___________.
已知等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以每秒0.25cm的速度运动, 当点P运动到PA与腰垂直的位置时,点P运动的时间应为__ _____秒.
如图,正方形ABCD在平面直角坐标系中的位置如图所示,点B与原点重合,点D坐标为(4,4),当三角板直角顶点P坐标为(3,3)时,设一直角边与x轴交于点E,另一直角边与y轴交于点F.在三角板绕点P旋转的过程中,使得△POE能否成为等腰三角形.请写出所有满足条件的点F的坐标