满分5 > 初中数学试题 >

(本题满分12分) 已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两...

(本题满分12分)

 已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。

1.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;

2.(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.

①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;

②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断6ec8aac122bd4f6e是否为定值.若是.请求出该定值;若不是.请说明理由。

6ec8aac122bd4f6e

 

1.(1)证明:如图I,分别连接OE、0F  ∵四边形ABCD是菱形  ∴AC⊥BD,BD平分∠ADC.AD=DC=BC  ∴∠COD=∠COB=∠AOD=90°.    ∠ADO=∠ADC=×60°=30°   又∵E、F分别为DC、CB中点    ∴OE=CD,OF=BC,AO=AD   ∴0E=OF=OA   ∴点O即为△AEF的外心 2.(2) ①猜想:外心P一定落在直线DB上。 证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,P J⊥AD于J ∴∠PIE=∠PJD=90°,∵∠ADC=60° ∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120° ∵点P是等边△AEF的外心,∴∠EPA=120°,PE=PA, ∴∠IPJ=∠EPA,∴∠IPE=∠JPA ∴△PIE≌△PJA, ∴PI=PJ ∴点P在∠ADC的平分线上,即点P落在直线DB上。 ②为定值2. 当AE⊥DC时.△AEF面积最小, 此时点E、F分别为DC、CB中点. 连接BD、AC交于点P,由(1) 可得点P即为△AEF的外心 解法一:如图3.设MN交BC于点G 设DM=x,DN=y(x≠0.y≠O),则 CN= ∵BC∥DA ∴△GBP∽△MDP.∴BG=DM=x. ∴ ∵BC∥DA,∴△NCG∽△NDM ∴,∴ ∴ ∴,即 其它解法略。 【解析】略
复制答案
考点分析:
相关试题推荐

 (本题满分10分)

如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.

6ec8aac122bd4f6e

1.(1)当a=-1 , b=1时,求抛物线n的解析式;

2.(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;

3.(3)若四边形AC1A1C为矩形,请求出a和b应满足的关系式.

 

查看答案

(本题满分10分)

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.

1.(1)求这条抛物线所对应的函数关系式;

2.(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;

3.(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

6ec8aac122bd4f6e

 

 

查看答案

(本题满分10分)

迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.

1.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.

2.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?

 

 

查看答案

(本题满分8分)

如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.

6ec8aac122bd4f6e

1.(1)求∠A的度数;

2.(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=6ec8aac122bd4f6e,求图中阴影部分的面积.

 

查看答案

(本题满分6分)

如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).

1.(1)将Rt△ABC沿X轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1的坐标。

2.(2)将原来的Rt△ABC绕着点B顺时针旋转90°得到Rt△A2B2C2,试在图画出Rt△A2B2C2的图形。

6ec8aac122bd4f6e

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.