运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
1.如图1,在等腰三角形ABC中,AB=AC,AC边上的高为,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为、.连接AM,可得结论+=.当点M在BC延长线上时,、、之间的等量关系式是 .(直接写出结论不必证明).
2.应用:平面直角坐标系中有两条直线:、:,若上的一点M到的距离是1.请运用(1)的条件和结论求出点M的坐标.
张老师于2010年9月份在杭州买了一套楼房,当时(即9月份)在建行贷款96万元,贷款期限为20年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%(每月还款数额=平均每月应还的贷款本金+月利息,月利息=上月所剩贷款本金数额×月利率).
1.求张老师借款后第一个月的还款数额.
2.假设贷款月利率不变,请写出张老师借款后第n(n是正整数)个月还款数额p与n之间的函数关系式(不必化简).
3.在(2)的条件下,求张老师2011年10份的还款数额.
已知△ABC,∠ACB=90º,AC=BC,点E、F在AB上,∠ECF=45º,设△ABC的面积为S,说明AF·BE=2S的理由。
在萧山区第二届汽车展期间,某汽车经销商推出四种型号的小轿车共1000辆进行展销.型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.
1.参加展销的型号轿车有多少辆?
2.请你将图2的统计图补充完整;
3.通过计算说明,哪一种型号的轿车销售情况最好?
小明用下面的方法求出方程的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程 |
换元法得新方程 |
解新方程 |
检验 |
求原方程的解 |
令 则 |
t=2 |
t =2 > 0 |
所以x=4 |
|
|
|
|
|
|
|
|
|
|
图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.