为发展“低碳经济”,某单位进行技术革新, 让可再生资源重新利用. 从今年1月1日开始,该单位每月再生资源处理量y(吨)与月份x之间成如下一次函数关系:
月份x |
1 |
2 |
再生资源处理量y(吨) |
40 |
50 |
月处理成本z(元)与每月再生资源处理量y(吨)之间的函数关系可近似地表示为:
z =,每处理一吨再生资源得到的新产品的售价定为100元.
1.该单位哪个月获得利润最大?最大是多少?
2.随着人们环保意识的增加,该单位需求的可再生资源数量受限。今年三、四月份的再生资源处理量都比二月份减少了m% ,该新产品的产量也随之减少,其售价都比二月份的售价增加了0.6m%.五月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20% .如果该单位在保持三月份的再生资源处理量和新产品售价的基础上,其利润是二月份的利润的一样,求m .( m保留整数) (
如图10-1-2(1),10-1-2(2),四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
1.如图10-1-2(1),当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ;
③请证明你的上述两猜想。
2.如图10-1-2(2),当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系。
某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题
1.共抽取了 名学生的体育测试成绩进行统计.
2.随机抽取的这部分学生中男生体育成绩的平均数是 ,众数是 ;女生体育成绩的中位数是 .
3.若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?
一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的表面积和体积.
已知A,B两点在直线l的同侧,试用直尺(没有刻度)和圆规,在l上找两点C和D(CD的长度为定值),使得AC+CD+DB最短.(不要求写画法)
李老师准备给张兰家长打电话,由于保管不善,电话本上的张兰家长手机号码中,有两个数字已模糊不清.如果用x、y表示这两个看不清的数字,那么张兰家长的手机号码为139x370y580(手机号码由11个数字组成),李老师记得这11个数字之和是20的整数倍.
1.求x+y的值;
2.求小沈一次拨对小陈手机号码的概率.