室内温度是20°C,室外温度是 -1°C,室外温度比室内温度低_________°C.
.的相反数为________.
如图(1)在Rt△ACB中,∠C=90°AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1 cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ。若设运动的时间为t(s)(0<t<2).根据以上信息,解答下列问题:
1.当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?
2.设四边形PQCB的面积为y(),直接写出y与t之间的函数关系式;
3.在点P、点Q的移动过程中,如果将△APQ沿其一边所在直线翻折,翻折后的三角形与△APQ组成一个四边形,那么是否存在某一时刻t,使组成的四边形为菱形?若存在,求出t的值;若不存在,请说明理由.
为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润、与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资
方案?
如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
1.求证:ME = MF.
2.如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
3.如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
4.根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由.
1.(1)如果△ABC的面积是S,E是BC的中点,连接AE(如图1),则△AEC的面积是 ;
(2)在△ABC的外部作△ACD,F是AD的中点,连接CF(如图2),若四边形ABCD的面积是S,则四边形AECF的面积是 ;
(3)若任意四边形ABCD的面积是S,E、F分别是一组对边AB、CD的中点,连接AF,CE(如图3),则四边形AECF的面积是 ;
图1 图2 图3
2.拓展与应用
(1)若八边形ABCDEFGH的面积是100,K、M、N、O、P、Q分别是AB、BC、CD、EF、FG、GH的中点,连接KH、MG、NF、OD、PC、QB、(如图4),则图中阴影部分的面积是 ;
(2)四边形ABCD的面积是100,E、F分别是一组对边AB、CD上的点,且AE=AB,CF=CD,连接AF,CE(如图5),则四边形AECF的面积是 ;
(3)(如图6) ABCD的面积是2,AB=a,BC=b,点E从点A出发沿AB以每秒v个单位长的速度向点B运动,点F从点B出发沿BC以每秒个单位长的速度向点C运动.E、F分别从点A、B同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形DEBF的面积的值是否随着时间t的变化而变化?若不变,请写出这个值 ,并写出理由;若变化,说明是怎样变化的.
图4 图5 图6