满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与...

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;

(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;

(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

6ec8aac122bd4f6e

 

:【解析】 (1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点, ∴, 解得:, ∴y=x2﹣x+3; ∴点C的坐标为:(0,3); (2)当△PAB是以AB为直角边的直角三角形,且∠PAB=90°, ∵A(3,0),B(4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°, ∴AO=DO, ∵A点坐标为(3,0), ∴D点的坐标为:(0,3), ∴直线AD解析式为:y=kx+b,将A,D分别代入得: ∴0=3k+b,b=3, ∴k=﹣1, ∴y=﹣x+3, ∴y=x2﹣x+3=﹣x+3, ∴x2﹣3x=0, 解得:x=0或3, ∴y=3或0(不合题意舍去), ∴P点坐标为(0,3), 当△PAB是以AB为直角边的直角三角形,且∠PBA=90°, 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D点坐标为:(0,5),B点坐标为:(4,1), ∴直线AD解析式为:y=kx+b,将B,D分别代入得: ∴1=4k+b,b=5, ∴k=﹣1, ∴y=﹣x+5, ∴y=x2﹣x+3=﹣x+5, ∴x2﹣3x﹣4=0, 解得:x1=﹣1,x2=4, ∴y1=6,y2=1, ∴P点坐标为(﹣1,6),(4,﹣1), ∴点P的坐标为:(﹣1,6),(4,﹣1),(0,3); (3)作EM⊥BO, ∵当OE∥AB时,△FEO面积最小, ∴∠EOM=45°, ∴MO=EM, ∵E在直线CA上, ∴E点坐标为(x,﹣x+3), ∴x=﹣x+3, 解得:x=, ∴E点坐标为(,). 【解析】:(1)根据A(3,0),B(4,1)两点利用待定系数法求二次函数解析式; (2)从当△PAB是以AB为直角边的直角三角形,且∠PAB=90°与当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,分别求出符合要求的答案; (3)根据当OE∥AB时,△FEO面积最小,得出OM=ME,求出即可.
复制答案
考点分析:
相关试题推荐

梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).

(1)当t为何值时,四边形PCDQ为平行四边形?

(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.

6ec8aac122bd4f6e

 

查看答案

一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.

(1)求第一批玩具每套的进价是多少元?

(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?

 

查看答案

有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.

(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;

(2)求(1)中方程有两个相等实数解的概率.

 

查看答案

把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.

(1)求证:△BHE≌△DGF;

(2)若AB=6cm,BC=8cm,求线段FG的长.

6ec8aac122bd4f6e

 

查看答案

第六次全国人口普查工作圆满结束,2011年5月20日《遵义晚报》报到了遵义市人口普查结果,并根据我市常住人口情况,绘制出不同年龄的扇形统计图;普查结果显示,2010年我市常住人口中,每10万人就有4402人具有大学文化程度,与2000年第五次人口普查相比,是2000年每10万人具有大学文化程度人数的3倍少473人,请根据以上信息,

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.