满分5 > 初中数学试题 >

(2011•潼南县)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=9...

(2011•潼南县)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.

(1)求b,c的值;

(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;

(3)在(2)的条件下:

①求以点E、B、F、D为顶点的四边形的面积;

②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.

6ec8aac122bd4f6e

 

:【解析】 (1)由已知得:A(﹣1,0),B(4,5), ∵二次函数y=x2+bx+c的图象经过点A(﹣1,0),B(4,5), ∴, 解得:b=﹣2,c=﹣3; (2)如图:∵直线AB经过点A(﹣1,0),B(4,5), ∴直线AB的解析式为:y=x+1, ∵二次函数y=x2﹣2x﹣3, ∴设点E(t,t+1),则F(t,t2﹣2t﹣3), ∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣)2+, ∴当t=时,EF的最大值为, ∴点E的坐标为(,); (3)①如图:顺次连接点E、B、F、D得四边形EBFD. 可求出点F的坐标(,),点D的坐标为(1,﹣4) S四边形EBFD=S△BEF+S△DEF=××(4﹣)+××(﹣1)=; ②如图: ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3) 则有:m2﹣2m﹣2=, 解得:m1=,m2=, ∴P1(,),P2(,), ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3) 则有:n2﹣2n﹣2=﹣, 解得:n1=,n2=(与点F重合,舍去), ∴P3(,), 综上所述:所有点P的坐标:P1(,),P2(,),P3(,)能使△EFP组成以EF为直角边的直角三角形. 【关键
复制答案
考点分析:
相关试题推荐

(2011•潼南县)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:

种植户

种植A类蔬菜面积

(单位:亩)

种植B类蔬菜面积

(单位:亩)

总收入

(单位:元)

3

1

12500

2

3

16500

说明:不同种植户种植的同类蔬菜每亩平均收入相等.

(1)求A、B两类蔬菜每亩平均收入各是多少元?

(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.

 

查看答案

(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求证:AD=AE;

(2)若AD=8,DC=4,求AB的长.

6ec8aac122bd4f6e

 

查看答案

(2011•潼南县)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数6ec8aac122bd4f6e(m≠0)的图象相交于A、B两点.求:

(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;

(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.

6ec8aac122bd4f6e

 

查看答案

(2011•潼南县)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.

6ec8aac122bd4f6e

(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;

(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?

 

查看答案

(2011•潼南县)先化简,再求值:6ec8aac122bd4f6e,其中a=6ec8aac122bd4f6e﹣1.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.