南方地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
1.求饮用水和蔬菜各有多少件?
2.现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
3.在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
如图,△ABC是等边三角形,点D、E分别在BC、AC上,BD=CE,AD与BE相交于点F.
1.试说明:△ABD≌△BCE
2.△AEF与△ABE相似吗?请说明理由.
3.试说明:BD2=AD·DF
如图,两颗树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着 正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?
如图,在四边形ABCD中,E是AD上一点,EC∥AB,EB∥DC,
1.△ABE与△ECD相似吗?为什么?
2.设△ABE的边BE上的高为h1,△ECD的边CD上的高为h2,△ABE的面积为4,△ECD的面积为1,求的值及△BCE的面积。
如图,已知一次函数y=kx+b的图象与y=-的图象交于A、B两点,且A点横坐标和B点纵坐标都是-2,求
1.一次函数的解析式
2.△AOB的面积
已知命题:如图,点A、D、B、E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.