满分5 > 初中数学试题 >

如图,在平面直角坐标系中,O为坐标原点,已知A(2,),C(4,0),E点从O出...

如图,在平面直角坐标系中,O为坐标原点,已知A(2,6ec8aac122bd4f6e),C(4,0),E点从O出发,以每秒1个单位的速度,沿边OC向C点运动,P点从O点出发,以每秒2个单位的速度,沿边OA与边AC向C运动,E、P两点同时出发,设运动时间为t秒。

6ec8aac122bd4f6e

(1) 求∠AOC的度数,

(2) 过 E作EH⊥AC于H,当t为何值时,△EPH是等边三角形。

(3)设四边形OEHP的面积S,求S关于t的函数表达式,并求出其最大值。

(4)当△OPE与以E、H、P为顶点的三角形相似,求P点坐标。

 

(1)60°(2)4/3(3)当, 当(4) 【解析】(1)【解析】 因为在平面直角坐标系中,O为坐标原点,已知A(2,),C(4,0),E点从O出发,以每秒1个单位的速度,沿边OC向C点运动,P点从O点出发,以每秒2个单位的速度,沿边OA与边AC向C运动,E、P两点同时出发,设运动时间为t秒, 由A(2,),C(4,0),坐标可以解得∠AOC =60° (2)由第一问可知,三角形0CA为等边三角形,当EP//AC时即,时,△EPH是等边三角形 (3)根据时间t的变化情况,最长道道C点用4秒钟,因此在这里根据两者的速度是2倍关系,分为两种情况,即 当;  当 借助于大三角形的面积减去两个小三角形的面积求解得到。  (4)因为当△OPE与以E、H、P为顶点的三角形相似时,借助于相似的性质可以得到 点 (1)由A(2,),C(4,0),坐标可以解得∠AOC (2)当EP//AC时即,时,△EPH是等边三角形 (3)根据时间t的变化情况,分为两种情况,当时,当时,借助于大三角形的面积减去两个小三角形的面积求解得到 (4)当△OPE与以E、H、P为顶点的三角形相似时,借助于相似的性质可以得到 点P坐标
复制答案
考点分析:
相关试题推荐

已知:一次函数y=6ec8aac122bd4f6e的图象与x轴、y轴的交点分别为B、C,二次函数的关系式为y=ax2-3ax-4a(a<0).

6ec8aac122bd4f6e

⑴说明:二次函数的图象过B点,并求出二次函数的图象与x轴的另一个交点A的坐标;⑵若二次函数图象的顶点,在一次函数图象的下方,求a的取值范围;

⑶若二次函数的图象过点C,则在此二次函数的图象上是否存在点D,使得△ABD是直角三角形,若存在,求出所有满足条件的点D坐标;若不存在,请说明理由.

 

查看答案

按如图所示的程序进行运算,并回答问题:

6ec8aac122bd4f6e

(1)   开始输入的值为3,那么输出的结果是_________.

(2)   要使开始输入的x值只经过一次运行就能输出结果,则x的取值范围是_____________.

(3)   要使开始输入的x值经过两次运行,才能输出结果,

则x的取值范围是____________.

 

查看答案

 如图,已知6ec8aac122bd4f6e6ec8aac122bd4f6e是一次函数6ec8aac122bd4f6e的图象和反比例函数6ec8aac122bd4f6e的图象的两个交点.

6ec8aac122bd4f6e

(1)求反比例函数和一次函数的函数关系式;

(2)求△6ec8aac122bd4f6e的面积;

(3)则方程6ec8aac122bd4f6e的解是                ;(请直接写出答案)

(4)则不等式6ec8aac122bd4f6e的解集是                .(请直接写出答案)

 

查看答案

在上海世博会期间,某商场印有“海宝”的服装很畅销,就用32000元购进了一批,上市后很快脱销,商场又用68000元购进第二批,所购数量是第一批购进数量的2倍,但每套进价多了10元.

(1)该商场两次共购进这种服装多少套?

(2)如果这两批服装每件的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=6ec8aac122bd4f6e×100%)

 

查看答案

作图题

在方格纸中,每个小格的顶点叫做格点,以格点连线为边三角形叫做格点三角形.图中的每个小正方形的边长都是1个单位.请你在图中,画出两个相似但不全等的格点

钝角三角形.

6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.