-3+4的值为( ).
A、-1 B、-7 C、1 D、7
(12分)如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:
(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;
(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a、b的值。
【解析】(1)根据点的位置,直接写出点的坐标;
(2)根据(1)中发现的规律,两点的横坐标、纵坐标都互为相反数,即横坐标的和为0,纵坐标的和为0,列方程,求a、b的值
如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC(∠C>∠B),试说明∠EAD=(∠C-∠B). (10分)
【解析】本题利用了三角形内角和定理、角的平分线的性质、直角三角形的性质求解
已知,如图在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标. (10分)
【解析】首先根据面积求得OA的长,再根据已知条件求得OB的长,最后求得OC的长.最后写坐标的时候注意点的位置
作图题:在下图中平移三角形ABC,使点A移到点D,点B和点C应移到什么位置?请在图中画出平移后图形(保留作图痕迹)。(9分)
【解析】平移作图的一般步骤为:
①确定平移的方向和距离,先确定一组对应点;
②确定图形中的关键点;
③利用第一组对应点和平移的性质确定图中所有关键点的对应点;
④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形
如图所示,直线AB∥CD,∠1=75°,求∠2的度数. (5分)
【解析】两直线平行,同位角相等,由直线AB∥CD,且被直线MN所截,交AB与点E,交CD于点F,∠1=75°,得到∠2=180°-∠1=180°-75°=105°