如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与 BC交于点E,F在DA的延长线上,且AF=AE. (1)求证:BF是⊙O的切线; (2)若AD=4,,求BC的长.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数: .
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
如图,直线分别交轴,轴于点,点是直线与双曲线在第一象限内的交点,轴,垂足为点,的面积为4.
(1)求点的坐标;
(2)求双曲线的解析式及直线与双曲线另一交点的坐标.
某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成夹角.
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)
某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行。下面两幅统计图反映了学生参加夏令营的报名情况,请你根据图中的信息回答下列问题:
(1)该年报名参加丙组的人数为 ;
(2)该年级报名参加本次活动的总人数为________,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲抽调多少人名学生到丙组?
如图所示,AB//CD,∠ACD=.
⑴用直尺和圆规作∠C的平分线CE,交AB于E,并在CD上取一点F,使AC=AF,再连接AF,交CE于K;(要求保留作图痕迹,不必写出作法)
⑵依据现有条件,直接写出图中所有相似的三角形﹒(图中不再增加字母和线段,不要求证明)