在下图中,每个正方形由边长为1 的小正方形组成:
1.观察图形,请填写下列表格:
正方形边长 |
1 |
3 |
5 |
7 |
… |
(奇数) |
黑色小正方形个数 |
|
|
|
|
… |
|
正方形边长 |
2 |
4 |
6 |
8 |
… |
(偶数) |
黑色小正方形个数 |
|
|
|
|
… |
|
2.在边长为(n≥1)的正方形中,设黑色小正方形的个数为,白色小正方形的个数为,问是否存在偶数,使?若存在,请写出的值;若不存在,请说明理由.
将图⑴中的矩形ABCD沿对角线剪开,再把△ABC沿着AD方向平移,得到图⑵中的△A′BC′,除△ADC与△C′BA′全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.
有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.
1.用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);
2.求摸出两张牌面图形都是中心对称图形的纸牌的概率.
先化简,再求值:,其中x=-4.
解不等式组并把解集在数轴上表示出来。
计算:.