如图,在直角梯形ABCD中,AB∥CD,∠A=90°,∠B=45°,AB=4, BC=3,F是DC上一点,且CF=, E,是线段AB上一动点,将射线EF绕点E顺时针旋转45°交BC边于点G.
1.直接写出线段AD和CD的长;
2.设AE=x,当x为何值时△BEG是等腰三角形;
3.当△BEG是等腰三角形时,将△BEG沿EG折叠,得到△B’EG,求△B’EG与五边形AEGCD重叠部分的面积.
如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(-1,0),点C的坐标为(0,-3),抛物线的顶点为D.
1.求抛物线的解析式和顶点D的坐标
2.二次函数的图像上是否存在点P,使得S△PAB=8S△ABD?若存在,求出P点坐标;若不存在,请说明理由;
3.若抛物线的对称轴与x轴交于E点,点F在直线BC上,点M在的二次函数图像上,如果以点F、M、D、E为顶点的四边形是平行四边形,请你求出符合条件的点M的坐标.
一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式 |
粗加工后销售 |
精加工后销售 |
每吨获利(元) |
1000 |
2000 |
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
1.如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
2.如果先进行精加工,然后进行粗加工.
①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD。
1.求证:∠CDE=2∠B;
2.若BD:AB=,求⊙O的半径及DF的长。
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α为45°,底端C点的俯角β为60°,此时直升飞机与建筑物CD的水平距离BC为60米,求建筑物CD的高。(结果保留根号)
如图,在□ABCD中,E、F为BC两点,且BE=CF,AF=DE.求证:
1.△ABF≌△DCE;
2.四边形ABCD是矩形