下列函数中,自变量的取值范围是的是
A. B. C. D.
下列各数中,最小的实数是
A. B. C. D.
如图,在平面直角坐标系中,A、C、D的坐标分别是(1,2)、(4,0)、(3,2),点M是AD的中点.
1.求证:四边形AOCD是等腰梯形;
2.动点P、Q分别在线段OC和MC上运动,且保持∠MPQ=60°不变.设PC=x,MQ=y,求y与x的函数关系式;
3.在(2)中:试探究当点P从点O首次运动到点E(3,0)时,Q点运动的路径长.
已知抛物线.
1.试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;
2.如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x﹣1与抛物线交于A、B两点,并与它的对称轴交于点D.
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形?(直接写出平移的方法,不要说明理由)
如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离是1.7m,看旗杆顶部的仰角为;小红的眼睛与地面的距离是1.5m,看旗杆顶部的仰角为.两人相距23m且位于旗杆两侧(点在同一条直线上).请求出旗杆的高度.(参考数据:,,结果保留整数)
如图,AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.
1.求证:AD是半圆O的切线;
2.若BC=2,CE=,求AD的长.