如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足, AC=BC.
⑴求证:CD=BE.⑵若AD=3,DC=4,求AE.
【解析】(1)根据平行线的性质可以得到∠DAC=∠BCE,再根据已知就可以证明△BCE≌△CAD,然后根据其对应边相等就可以得到;
(2)首先根据勾股定理的AC的长,再根据(1)的结论就可以求出AE
(1)解方程: (2)解不等式组:把解集在数轴上表示出来.
计算:
(1) (2
如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(―1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是 。
如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=500,点D 一点,则∠D=____▲ ____
若圆锥的底面半径为3cm,高为4cm,则这个圆锥的侧面积为 ▲ cm2