下列运算正确的是 ( ▲ )
A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7
7的相反数是 ( ▲ )
A. B.7 C. D.
如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.
1.求点E、F的坐标(用含m的式子表示);
2.连接OA,若△OAF是等腰三角形,求m的值;
3.如图(2),设抛物线y=a(x-m-6)2+h经过A、E两点,其顶点为M,连接AM,
若∠OAM=90°,求a、h、m的值.
(1) (2)
已知直线与轴轴分别交于点A和点B,点B的坐标为(0,6)
1.求的值和点A的坐标;
2.在矩形OACB中,某动点P从点B出发以每秒1个单位的速度沿折线B-C-A运动.运动至点A停止.直线PD⊥AB于点D,与轴交于点E.设在矩形OACB中直线PD未扫过的面积为S,运动时间为 t.
①求与t的函数关系式;
②⊙Q是△OAB的内切圆,问:t为何值时,PE与⊙Q相交的弦长为2.4 ?
1.如图1是两个有一边重合的正三角形,那么由其中一个正三角形绕平面内某一点旋转后能与另一个正三角形重合,平面内可以作为旋转中心的点有 _ 个.
2.如图2是两个有一边重合的正方形,那么由其中一个正方形绕平面内某一点旋转后能与另一个正方形重合,平面内可以作为旋转中心的点有 _ 个.
3.如图3是两个有一边重合的正五边形,那么由其中一个正五边形绕平面内某一点旋转后能与另一个正五边形重合,平面内可以作为旋转中心的点有 _ 个.
4.如图4是两个有一边重合的正六边形,那么由其中一个正六边形绕平面内某一点旋转后能与另一个正六边形重合,平面内可以作为旋转中心的点有 _ 个.
5.拓展探究:两个有一边重合的正n(n≥3)边形,那么由其中一个正n边形绕平面内某一点旋转后能与另一个正n边形重合,平面内可以作为旋转中心的点有多少个?(直接写结论)
|
|
|
|
小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).
1.A点所表示的实际意义是 ;= ;
2.求出AB所在直线的函数关系式;
3.如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?