如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
(1)将△ABC向右平移4个单位,再向上平移1个单位,得到△A1B1C1;
(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.
【解析】(1)把A、B、C三点先向右平移4个单位,再向上平移1个单位得到A1,B1,C1,顺次连接得到的各点即可;
(2)延长OA1到A2,使0A2=20A1,同法得到其余各点,顺次连接即可.
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30º,求∠ACF度数.
【解析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应角相等即可得到,从而求得∠ACF度数
⑴
⑵解方程:
【解析】(1)根据任何非0数的0次幂等于1, 负整数指数幂的意义,特殊三角函数值,二次根式求解
(2)解分式方程,首先去分母,化为整式方程求解,注意分母不能为0
如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t= ▲ 秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
如图,在□ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是 ▲ .
如图,双曲线经过矩形QABC的边BC的中点E,交AB于点D。若梯形ODBC的面积为3,则双曲线的解析式为 ▲ .