如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).
(1)请你用画树状图或列表格的方法,求出点(x,y)落在第二象限内的概率;
(2)直接写出点(x,y)落在函数图象上的概率.
【解析】通过树状图或列表,列举出所有情况,再计算概率即可.
根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):
解答下列问题:
(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;
(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?
【解析】(1)由六次全国人口普查中某市常住人口总数是450万人,再根据条形图求得大学,高中,初中,以及其他学历的人数,则可知小学学历的人数;
(2)根据扇形图求得第五次全国人口普查中某市常住人口中高中学历的百分比,求出人数,根据第六次全国人口普查中该市常住人口中高中学人数,求出即可
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
(1)将△ABC向右平移4个单位,再向上平移1个单位,得到△A1B1C1;
(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.
【解析】(1)把A、B、C三点先向右平移4个单位,再向上平移1个单位得到A1,B1,C1,顺次连接得到的各点即可;
(2)延长OA1到A2,使0A2=20A1,同法得到其余各点,顺次连接即可.
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30º,求∠ACF度数.
【解析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应角相等即可得到,从而求得∠ACF度数
⑴
⑵解方程:
【解析】(1)根据任何非0数的0次幂等于1, 负整数指数幂的意义,特殊三角函数值,二次根式求解
(2)解分式方程,首先去分母,化为整式方程求解,注意分母不能为0
如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t= ▲ 秒时,以点P,Q,E,D为顶点的四边形是平行四边形.