据悉,某市发改委拟于今年4月27日举行居民用水价格调整听证会,届时将有两个方案提供听证。如图(1),射线OA、射线OB分别表示现行的、方案一的每户每月的用水费y(元)与每户每月的用水量x(立方米)之间的函数关系,已知方案一的用水价比现行的用水价每立方米多0.96元;方案二如图(2)表格所示,每月的每立方米用水价格由该月的用水量决定,且第一、二、三级的用水价格之比为1︰1.5︰2(精确到0.01元后).
1.写出现行的用水价是每立方米多少元?
2.求图(1)中m的值和射线OB所对应的函数解析式,并写出定义域;
3.若小明家某月的用水量是a立方米,请分别写出三种情况下(现行的、方案一和方案二)该月的水费b(用a的代数式表示);
4.小明家最近10个月来的每月用水量的频数分布直方图
如图(3)所示,估计小明会赞同采用哪个方案?请说明理由。
如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60º.
1.求⊙O的直径;
2.若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;
3.若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,△BEF为直角三角形.
有两个可以自由转动的均匀转盘,都被分成了3等份,并在每份内均标有数字,如图所示.规则如下:
①分别转动转盘;
②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停止在等份线上,那么重转一次,直到指针指向某一份为止).
1.用列表法或树状图分别求出数字之积为3的倍数和数字之积为5的倍数的概率;
2.小明和小亮想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小明得2分;数字之积为5的倍数时,小亮得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏对双方公平.
国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
1.请将两幅统计图补充完整;
2.在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人;
3.根据统计结果,请你简单谈谈自己的看法.
先化简,再求值:,其中,.
计算:-(-4)+-2cos30°