小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入 |
… |
1 |
2 |
3 |
4 |
5 |
… |
输出 |
… |
|
|
|
|
|
… |
那么,当输入数据是8时,输出的数据是( )
A、 B、 C、 D、
下列计算正确的是( )
A、 B、
C、 D、
如图1,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于点A、点B,与y轴交于点C,且A、B两点的坐标分别是(4,0)、(0,-2),tan∠BCO=(1)求抛物线解析式;(2)点M为抛物线上一点,若以MB为直径的圆与直线BC相切于点B,求点M的坐标;(3) 如图2,若点P是抛物线上的动点,点Q是直线y=-x的动点,是否存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形;如果存在,请求出点P的坐标,如果不存在,请说明理由.
【解析】(1)利用A、B两点的坐标和tan∠BCO=求抛物线解析式
(2)设点m(x,y),则由以MB为直径的圆与直线BC相切于点B,说明了点B为直径的一个端点,另外,BC直线方程为y=2x+4,利用BM的中点就是圆心坐标,BM垂直于CB,因此联立方程组可得M的坐标
(3)假设存在以点P、Q、C、O为顶点且以OC为一边的四边形是直角梯形
则有几种情况的一种直角为C,直角为P,直角为O,直角为Q的情况 ,那么分情况讨论求解,利用一组对边平行,一个角为直角,进行求解
近年来,大学生就业日益困难.为了扶持大学生自主创业,某市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其他费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.
(1)分别求出40<x≤60;60<x<80时,月销售量y(万件)与销售
单价x(元)之间的函数关系;
(2)当销售单价定为50元时,为保证公司月利润达到5万元
可安排员工多少人?
(3)若该公司有80名员工,则该公司最早可在几月后还清贷款?
【解析】(1)利用图象上点的坐标利用待定系数法代入y=kx+b,求出一次函数解析式即可;
(1) 根据利润=销售额—生产成本—员工工资—其它费用列方程求出解
(3)分两种情况进行讨论:当时,当时得出结论
如图1,点A在反比例函数y=的图象上,AC⊥x轴,垂足为C,且△AOC的面积为.(1)求反比例函数的解析式;
(2)当点A的横坐标为,过点A的直线交x、y轴于E、F两点,且△EOF以点A为外心,求这条直线的解析式;
(3)如图2,在(2)下,若Q是OE上不与O、E重合的任意一点,QD⊥EF于D,DH⊥y轴于H,在线段OE上是否存在点Q,使QH∥EF?若存在这样的点,请求出点Q的坐标;若不存在,请说明理由.
【解析】(1)利用三角形的面积求出反比例函数的解析式
(2)作AC⊥x轴,AD⊥y轴,利用外心性质求出E、F两点坐标,从而求出直线的解析式
(3)利用平行线的性质和相似三角形求证
如图所示,AB为⊙O的直径,P为AB延长线上一点,PD切⊙O于C,BC和AD的延长线相交于点E,且AB=AE。 (1)求证: (2)若圆的半径为1,△ABE是等边三角形,求BP的长.
【解析】(1)连OC,根据切线的性质得到OC⊥PD,又AB=AE,OC=OB,则∠2=∠E,∠1=∠2,得到∠1=∠E,则OC∥AE,即可得到结论;
(2)根据等边三角形的性质得∠A=60°,则∠COB=60°,则∠P=30°,再根据含30°的直角三角形三边的关系得到OP=2OC=2,从而求出BP