已知△ABC中,∠ACB=90°,AC=6,BC=8,过点A作直线MN⊥AC,点P是直线MN上的一个动点(与点A不重合),连结CP交AB于点D,设AP=,AD=.
1.如图1,若点P在射线AM上,求y与x的函数解析式;
2.射线AM上是否存在一点P,使以点D、A、P组成的三角形与△ABC相似,若存在,求AP的长,若不存在,说明理由;
3.如图2,过点B作BE⊥MN,垂足为E,以C为圆心、AC为半径的⊙C与以P为圆心PD为半径的动⊙P相切,求⊙P的半径
电瓶厂投资2000万元安装了电动自行车电瓶流水线,生产的电瓶成本为40元只,设销售单价为元(),年销售量为万件,年获利为(万元).经过市场调研发现:当100元时,20万件.当100200元时,在100元的基础上每增加1元,将减少0.1万件;当200250元时,在200元的基础上每增加1元,将减少0.2万件.(年获利年销售额-生产成本-投资)
1.当=180时,= ▲ 万元;当=240时,= ▲ 万件
2.求与的函数关系式;
3.当为何值时,第一年的年获利亏损最少?
如图,一根电线杆AB和一块半圆形广告牌在太阳照射下,顶端A的影子刚好落在半圆形广告牌的最高处G,而半圆形广告牌的影子刚好落在地面上一点E.已知BC=5米,DE=2米,半圆的直径CD=6米.
1.求线段EF的长
2.求电线杆AB的高度
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.
1.求证:DE是⊙O的切线;
2.若AB=6,BD=3,求AE和BC的长.
如图,吴老师不小心把墨水滴在了3个班学生捐款金额的统计表上,只记得:三个班的捐款总金额是7700元,2班的捐款金额比3班的捐款金额多300元.
班级 |
1班 |
2班 |
3班 |
金额(元) |
2000 |
|
|
1.求2班、3班的捐款金额
2.若1班学生平均每人捐款的金额大于48元,小于51元.求1班的学生人数.
小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,两个陌生人可在1至4层的任意一层出电梯
1.求甲、乙二人在同一层楼出电梯的概率
2.约定“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该约定是否公平?若公平,说明理由;若不公平,修改成公平约定