-的绝对值等于( )
A. 4 B. - C. D.
如图,在平面直角坐标系xOy中,抛物线与y轴交于点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从0,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x辅于点F.设动点P,Q移动的时间为t(单位:秒).
1.求A,B,C三点的坐标和抛物线的顶点坐标;
2.当O<t<时’△PQF的面积是否为定值?若是,求出此定值,若不是,说明理由
3.当t为何值时,△PQF为等腰三角形?请写出解答过程.
如图,以BC为直径的圆0交∆CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2 =AF.AC.
1.求△ANM≅△ENM;
2.求证:FB是圆O的切线
3.证明四边形AMEN是菱形.
我国云南、贵州等西南地区遇到多年不遇的旱灾.“一方有难,八方支援”为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作—小时,灌溉农田32亩。
1.设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台.
①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数关系式
2.已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元, 如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用多少?
“五·一”假期,某公司组织部分员工分别到A、B、C、D四地旅游,公司按定额购买了前往各地的车票,下图是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:
1.若去D地的车票占全部车票的10%,请求出D地车票的数量,并补全统计图;
2.若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小胡抽到去A地的概率是多少?
3.若有一张车票,小王、小李都想要,决定采取抛掷一枚各面分别标有l,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用“列表法或画树状图”方法分析.这个规则对双方是否公平?
如图(1),Rt ∆ABC中,垂足为D.AF平分∠CAB.交CD于点E,交CB于点F.
1.求证:CE=CF;
2.将图(1)中的∆ADE沿AB向右平移到∆A'D'E'的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE’与CF有怎样的数量关系?请证明你的结论.