满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交...

如图1,在平面直角坐标系中,二次函数学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

(1)求这个二次函数的表达式;

(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;

(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度;

(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.

 

(1)(2)存在,F点的坐标为(2,-3)(3)或(4), 【解析】【解析】 (1)方法一:由已知得:C(0,-3),A(-1,0)  将A、B、C三点的坐标代入得          ………………… 2分 解得:                                       所以这个二次函数的表达式为:          ………………… 3分 方法二:由已知得:C(0,-3),A(-1,0)          设该表达式为:                     ………………… 2分 将C点的坐标代入得:                           所以这个二次函数的表达式为:           …………………3分 (注:表达式的最终结果用三种形式中的任一种都不扣分) (2)方法一:存在,F点的坐标为(2,-3)              理由:易得D(1,-4),所以直线CD的解析式为: ∴E点的坐标为(-3,0)                              由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF ∴以A、C、E、F为顶点的四边形为平行四边形 ∴存在点F,坐标为(2,-3)                         ………………… 6分 方法二:易得D(1,-4),所以直线CD的解析式为: ∴E点的坐标为(-3,0)                              ∵以A、C、E、F为顶点的四边形为平行四边形 ∴F点的坐标为(2,-3)或(―2,―3)或(-4,3)   代入抛物线的表达式检验,只有(2,-3)符合 ∴存在点F,坐标为(2,-3)                        ………………… 6分 (3)如图,①当直线MN在x轴上方时,设圆的半径为R(R>0),则N(R+1,R), 代入抛物线的表达式,解得         …………………8分 ②当直线MN在x轴下方时,设圆的半径为r(r>0), 则N(r+1,-r), 代入抛物线的表达式,解得     ………………… 9分 ∴圆的半径为或.     (4)过点P作y轴的平行线与AG交于点Q, 易得G(2,-3),直线AG为.        设P(x,),则Q(x,-x-1),PQ. 当时,△APG的面积最大 此时P点的坐标为,.    ………………… 12分 (1)根据已知条件,易求得C、A的坐标,可用待定系数法求出抛物线的解析式; (2)根据以点A、C、E、F为顶点的四边形为平行四边形,由平行四边形的性质以及二次函数的性质得出AE=CF,AE∥CF即可得出答案. (3)分两种情况进行讨论:①当直线MN在x轴上方时;②当直线MN在x轴下方时,设圆的半径,代入抛物线求解 (4)易求得AC的长,由于AC长为定值,当P到直线AG的距离最大时,△APG的面积最大.可过P作y轴的平行线,交AG于Q;设出P点坐标,根据直线AG的解析式可求出Q点坐标,也就求出PQ的长,进而可得出关于△APG的面积与P点坐标的函数关系式,根据函数的性质可求出△APG的最大面积及P点的坐标,根据此时△APG的面积和AG的长,即可求出P到直线AC的最大距离.
复制答案
考点分析:
相关试题推荐

点D是⊙O的直径CA延长线上一点,点B在⊙O上,BD是⊙O的切线,且AB=AD.

学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

(1)求证:点A是DO的中点.

(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!,求△ACF的面积.

 

查看答案

若一个矩形的短边与长边的比值为学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!(黄金分割数),我们把这样的矩形叫做黄金矩形.

学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;

(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.

 

查看答案

某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.

(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;

(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助学校选出最省钱的一种租车方案.

 

查看答案

某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且ABE三点在一条直线上,若

BE=15米,求这块广告牌的高度.(学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!≈1.73,结果保留整数)

 

查看答案

某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.

(1)该顾客至少可得到       元购物券,至多可得到        元购物券;

(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.