某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
1.今年三月份甲种电脑每台售价多少元
2.为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
3.如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?
已知:如图,AB是⊙O的直径,C是⊙O上一点,CD⊥AB,垂足为点D,是 的中点,与相交于点,8 cm,cm.
1.求AO的长
2.求的值.
小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选
1.用树状图或列表法求出小明先挑选的概率;
2.你认为这个游戏公平吗?请说明理由
某厂家新开发一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A与地面距离1 m.
1.该车大灯照亮地面的宽度BC约是多少?
2.一般正常人从发现危险到做出刹车动作的反应时间是0.2 s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这过程中刹车距离是 m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,, ,)
如图,在平面直角坐标系中,函数的图象经过点A(3,2)和B(,),过点A作y轴的垂线,垂足为C.
1.求的值;
2.当△ABC的面积为时,求直线AB的解析式.
如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F
1.求证:OE=OF
2.如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.