如图1,已知抛物线与x轴交于点A和点B,与y轴相交于点C.
1.求A、B、C三点的坐标
2.点D为射线CB上的一动点(点D、B不重合),过点B作x轴的垂线BE与以点D为顶点的抛物线y=(x-t)2+h相交于点E,从△ADE和△ADB中任选一个三角形,求出当其面积等于△ABE的面积时的t的值;(友情提示:1、只选取一个三角形求解即可;2、若对两个三角形都作了解答,只按第一个解答给分.)
3.如图2,若点P是直线上的一个动点,点Q是抛物线上的一个动点,若以点O,C,P和Q为顶点的四边形为直角梯形,求相应的点P的坐标.
某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.
1.求这条抛物线的解析式;
2.在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.
如图,AB为⊙O的直径,AM和BN是它的两条切线,E为⊙O的半圆弧上一动点(不与A、B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.
1.求证:CD为⊙O的切线
2.若tan∠BAC=,求 的值
如图,网格中每个小正方形的边长都是1个单位.折线段ABC的位置如图所示.
1.现把折线段ABC向右平移4个单位,画出相应的图形;
2.把折线段绕线段的中点D顺时针旋转90°,画出相应的图形
3.在上述两次变换中,点的路径的长度比点的路径的长度大 个单位.
有4张形状、大小和质地都相同的卡片,正面分别写有字母A,B,C,D和一个算式,背面完全一致.将这4张卡片背面向上洗匀,从中随机抽取1张,不放回,接着再随机抽取1张.
1.请用画树形图或列表法表示出所有的可能结果;(卡片可用A,B,C,D表示)
2.将“第一张卡片上的算式是正确,同时第二张卡片上的算式是错误”记为事件A,求事件A的概率.
如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.求证:∠AEB=∠CFB.