如图9, 已知抛物线与轴交于A (-4,0) 和B(1,0)两点,与轴交于C(0,-2)点.
1.求此抛物线的解析式;
2.设G是线段BC上的动点,作GH//AC交AB于H,连接CF,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;
3.若M为抛物线上A、C两点间的一个动点,过M作轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标
阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如一样的式子,其实我们还可以将其进一步化简:
; (Ⅰ) (Ⅱ)
. (Ⅲ)
以上这种化简的步骤叫做分母有理化.
还可以用以下方法化简:
|
1.请用不同的方法化简.
①参照(Ⅲ)式得=___________________________________________.
②参照(Ⅳ)式得=___________________________________________.
2.化简:
已知:如图,⊙O的直径AB与弦CD相交于E,弧BC=弧BD,CD∥BF,BF交AD的延长线于F。
1.求证:.BF是⊙O的切线
2.连结BC,若⊙O的半径为4,cos∠BCD=,求线段AD、CD的长.
为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
1.问符合题意的组建方案有几种?请你帮学校设计出来;
2.若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED
1.求证:△BEC≌△DEC;
2.延长BE交AD于F,当∠BED=120°时,求的度数.
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题:
1.这辆汽车的往、返速度是否相同?请说明理由;
2.求返程中y与x之间的函数表达式;
3.求这辆汽车从甲地出发4h时与甲地的距离