如图,矩形ABCD中,AB=6,BC=3.点E在线段BA上从B点以每秒1个单位的速度出发向A点运动,F是射线CD上一动点,在点E、F运动的过程中始终保持EF=5,且CF>BE,点P是EF的中点,连接AP.设点E运动时间为ts.
1.在点E运动过程中,AP的长度是如何变化的?( )
A.一直变短 B.一直变长 C.先变长后变短 D.先变短后变长
2.在点E、F运动的过程中,AP的长度存在一个最小值,当AP的长度取得最小值时,点P的位置应该在 .
3.以P为圆心作⊙P,当⊙P与矩形ABCD三边所在直线都相切时,求出此时t的值,并指出此时⊙P的半径长.
一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.
请你解答下列问题:
1.将m看作已知量,分别写出当0<x<m和x>m时,与之间的函数关系式;
2.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.
月份 |
用水量(吨) |
水费(元) |
四月 |
35 |
59.5 |
五月 |
80 |
151 |
七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
|
|
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点,就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
1.如图3,正方形ABCD的边长为2,E为BC的中点, P是BD上一动点.连结EP,CP,则EP+CP的最小值是________;
运用:
2.如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是 ;
操作:
3.如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹)
如图,在△ABD中,∠A=∠B=30°,以AB边上一点O为圆心,过A,D两点作⊙O交AB于C.
1.判断直线BD与⊙O的位置关系,并说明理由;
2.连接CD,若CD=5,求AB的长.
已知二次函数的图象与x轴有且只有一个公共点.
1.求该二次函数的图象的顶点坐标;
2.若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.
甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
1.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
2.若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.