)某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.
(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?
(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.
设a,b,c是△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.
(1)试判断△ABC的形状.
(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.
如图,是定远县统计局公布的2008~2011年全社会用电量的折线统计图.
(1)填写统计表:
2008~2011年定远县全社会用电量统计表:
年 份 |
2008 |
2009 |
2010 |
2011 |
全社会用电量 (单位:亿kW·h) |
13.33 |
|
|
|
(2)根据定远县2009年至2011年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识
(1)求△ABC的面积
(2)判断△ABC是什么形状? 并说明理由.
阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,体现了
数学的转化思想.
(2)解方程(x2+x)2-4(x2+x)-12=0.