四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如右图,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作
图痕迹不要求写作法).
□ABCD中,AB⊥AC,AB=1,BC=,对角线BD、AC交于点O. 将直线AC绕点O顺时针旋转分别交BC、AD于点E、F. (∠AOF为旋转角)
(1)试说明在旋转过程中,AF与CE总保持相等;
(2)证明:当∠AOF=90°时,四边形ABEF是平行四边形;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.
若一次函数和反比例函数的图象都经过点(1,1)(1)求反比例函数的解析式.(2)已知点在第三象限,且同时在两个函数的图像上,求点的坐标.(3)利用(2)的结果,若点的坐标为(2,0),且以点,,,为顶点的四边形是平行四边形,请你直接写出点的坐标.
已知一次函数的图象与反比例函数()的图象交于、两点。
(1)求反比例函数和一次函数的解析式,求出点B的坐标;
(2)在同一坐标系中画出两个函数的图像的示意图,并观察图像回答:当为何值时,?
(3)已知点C(1,0),求出△ABC的面积。
(4)在BC上是否存在一点E,使得直线AE将△ABC的面积二等分,如果存在请你画出这条直线,求出点E的坐标;如果不存在,请简单说明理由。
现有10个边长为1的正方形,排列形式如左下图, 请把它们分割后拼接成一个新的正方形.要求: 在左下图中用实线画出分割线, 并在右下图的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
用方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度。